Related Topics

Newsletter

LinkedIn
Vimeo
Facebook

Publications

A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles

Facioscapulohumeral muscular dystrophy (FSHD) represents a major unmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies. We developed a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response, and cell adhesion. This cellular model will be a powerful tool for studying FSHD and will ultimately assist in the development of effective treatments for muscular dystrophies. Read Full Article.

Derivation of Trisomy 21 affected human embryonic stem cell line Genea053

The Genea053 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Trisomy 21, indicative of Down Syndrome. Following ICM outgrowth on inactivated human feeders, CGH and STR analysis demonstrated a 47, XY, + 21 karyotype and male allele pattern. The hESC line had pluripotent cell morphology and expressed pluripotent cell markers including 83% Nanog positive, 87% Oct4, 88% Tra1-60 and 98% SSEA4. The cell line was negative for Mycoplasma and visible contamination. Read Full Article.

Derivation of DM2 affected human embryonic stem cell line Genea066

The Genea066 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying expansion of CCTG repeats in exon 1 of the ZNF9 gene, indicative of Myotonic Dystrophy Type 2 (DM2). Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 88% of cells expressed Nanog, 97% Oct4, 80% Tra1-60 and 99% SSEA4 and gave a Pluritest Pluripotency score of 31.3, Novelty of 1.22. The cell line was negative for Mycoplasma and visible contamination. Read Full Article.

Derivation of DM1 affected human embryonic stem cell line Genea067

The Genea067 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying expansion of CTG repeats in the DMPK gene, indicative of Myotonic Dystrophy Type 1 (DM1). Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 97% Oct4, 73% Tra1-60 and 98% SSEA4 and gave a Pluritest Pluripotency score of 25.75, Novelty of 1.46. The cell line was negative for Mycoplasmaand visible contamination.  Read Full Article.

Derivation of Trisomy 21 affected human embryonic stem cell line Genea021

The Genea021 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Trisomy 21, indicative of Down Syndrome. Following ICM outgrowth on inactivated human feeders, CGH and STR analyses demonstrated a 47, XY, + 21 karyotype and male allele pattern. The hESC line had pluripotent cell morphology, 71% of cells expressed Nanog, 84% Oct4, 23% Tra1–60 and 95% SSEA4, gave a Pluritest Pluripotency score of 21.85, Novelty of 1.42, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.  Read Full Article.

Derivation of Genea052 human embryonic stem cell line

The Genea052 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea052 was demonstrated with 85% of cells expressing Nanog, 87% Oct4, 60% Tra1-60 and 97% SSEA4, a PluriTest Pluripotency score of 27.21, Novelty score of 1.2 and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and any visible contamination.  Read Full Article.

Derivation of Genea047 human embryonic stem cell line

The Genea047 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype and female allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea047 was demonstrated with 88% of cells expressing Nanog, 95% Oct4, 59% Tra1-60 and 99% SSEA4, a PluriTest Pluripotency score of 30.86, Novelty score of 1.23 and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and any visible contamination.  Read Full Article.

Derivation of Genea042 human embryonic stem cell line

The Genea042 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype and female allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea042 was demonstrated with 81% of cells expressing Nanog, 95% Oct4, 53% Tra1-60 and 97% SSEA4, a PluriTest Pluripotency score of 30.06, Novelty score of 1.24 and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination. Read Full Article.

Derivation of Genea057 human embryonic stem cell line

The Genea057 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype and female allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea057 was demonstrated with 97% of cells expressing Nanog, 81% Oct4, 75% Tra1-60 and 97% SSEA4, a PluriTest Pluripotency score of 27.59 and Novelty score of 1.32. The cell line was negative for Mycoplasma and any visible contamination. Read Full Article.

Derivation of Genea043 human embryonic stem cell line

The Genea043 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea043 was demonstrated with 92% of cells expressing Nanog, 95% Oct4, 61% Tra1–60 and 99% SSEA4, a PluriTest Pluripotency score of 31.74, Novelty score of 1.2 and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination. Read Full Article.

Derivation of Genea015 human embryonic stem cell line

The Genea015 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male Allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea015 was demonstrated with 80% of cells expressing Nanog, 97% Oct4, 75% Tra1-60 and 98% SSEA4, a PluriTest Pluripotency score of 29.52, Novelty score of 1.3 and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination. Read Full Article.

Derivation of Genea002 human embryonic stem cell line

The Genea002 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype by CGH and male Allele pattern through STR analysis. Pluripotency of Genea002 was demonstrated with 75% of cells expressing Nanog, 93% Oct4, 83% Tra1-60 and 98% SSEA4, a Pluritest pluripotency score of 24.55, Novelty score of 1.39, teratomas with tissues from all embryonic germ layers and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.  Read Full Article.

Derivation of Genea016 human embryonic stem cell line

The Genea016 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype and female Allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea016 was demonstrated with 77% of cells expressing Nanog, 95% Oct4, 53% Tra1-60 and 98% SSEA4, a PluriTest Pluripotency score of 28.4, Novelty score of 1.37 and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.  Read Full Article.

Derivation of NEM2 affected human embryonic stem cell line Genea078

The Genea078 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying compound heterozygous mutations in the NEB gene, exon 55 deletion & c.15110dupA, indicative of Nemaline Myopathy Type 2 (NEM2). Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 76% of cells expressed Nanog, 93% Oct4, 67% Tra1–60 and 97% SSEA4 and gave a Pluritest Pluripotency score of 42.18, Novelty of 1.37. The cell line was negative for Mycoplasma and visible contamination.  Read Full Article.

Derivation of Huntington Disease affected Genea091 human embryonic stem cell line

The Genea091 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 40 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 92% of cells expressed Nanog, 97% Oct4, 79% Tra1-60 and 98% SSEA4 and gave a Pluritest pluripotency score of 38.36, Novelty of 1.35. The cell line was negative for Mycoplasma and visible contamination.  Read Full Article.

Derivation of FSHD1 affected human embryonic stem cell line Genea049

The Genea049 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying a deletion in 4q35 with only 5 D4Z4 repeats by PGD linkage analysis, indicative of FSHD1. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 90% of cells expressed Nanog, 96% Oct4, 80% Tra1–60 and 99% SSEA4, gave a Pluritest Pluripotency score of 23.16, Novelty of 1.43 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination. Read Full Article.

Derivation of human embryonic stem cell line Genea019

The Genea019 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype, female Allele pattern and unaffected Htt CAG repeat length, compared to HD affected sibling Genea020. Pluripotency of Genea019 was demonstrated with 75% of cells expressing Nanog, 89% Oct4, 48% Tra1-60 and 85% SSEA4, a Pluritest Pluripotency score of 22.97, Novelty score of 1.42, tri-lineage teratoma formation and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination. Read Full Article.

Derivation of Huntington Disease affected Genea018 human embryonic stem cell line

  The Genea018 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 46 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 75% of cells expressed Nanog, 91% Oct4, 73% Tra1-60 and 96% SSEA4, gave a Pluritest pluripotency score of 31.12, Novelty of 1.45, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination. Read Full Article.

Cell lines from morphologically abnormal discarded IVF embryos are typically euploid and unaccompanied by intrachromosomal aberrations

Routine IVF practices result in the discarding of a significant proportion of embryos due to their unsuitability for transfer or cryopreservation. The present study plated clinically unusable human blastocysts to derive cellular outgrowths for aneuploidy studies and genome-wide analysis of DNA copy number variations, and to evaluate their potential as a source for pluripotent stem cells. Just 79 cellular outgrowths were obtained from 1026 abnormal blastocysts (7.7%), reflecting their low developmental potential. Of these, 13 (16.5%) were karyotypically abnormal and included trisomies frequently detected in miscarriages, each of which was uniform (nonmosaic) and the result of meiotic nondisjunction. Evaluation of submicroscopic DNA gains and losses in 10 diploid cellular outgrowths did not identify increased rates of copy number variations. Five of these outgrowths were shown to express pluripotency markers and could be developed into cell lineages representative of the three germ layers. These data suggest that embryos with chromosomal abnormalities resist cell-line derivation, and mosaic aneuploidy produced from mitotic nondisjunction, common in preimplantation embryos, is likely to be diminished or lost under conditions of diploid cell competition. Furthermore, this work demonstrated that abnormal embryos discarded in IVF programmes can provide a valuable source for pluripotent stem cell lines.

During IVF, a large proportion of embryos are clinically unsuitable due to abnormal development and these embryos only have a small chance of achieving a pregnancy. Here we used these abnormal embryos to create cell lines for genetic testing and to determine their potential as stem cells. Of the 1026 abnormal embryos used, 79 (7.7%) created cell lines, reflecting their low developmental potential. Of those, only 16.5% had chromosomal anomalies, a much lower number than expected. This included chromosome abnormalities frequently observed in miscarriages, all of which were found in each cell tested (nonmosaic) and originated from the egg or the sperm as opposed to cell division. In-depth testing of 10 normal cell lines for small DNA gains and losses did not reveal an increased frequency of mutations. Furthermore, five of the cell lines were examined for stem cell properties and found to exhibit the hallmark features of stem cells including their ability to make mature cells from different parts of the body. Our data suggest that embryos with abnormal chromosomes resist making cell lines and that abnormalities that arise during cell division are likely to be lost due to competition with normal cells. We also demonstrated that abnormal embryos usually discarded in IVF programmes can provide a valuable source for stem cell lines. Read Full Article.

Proteomics of Huntington’s Disease-Affected Human Embryonic Stem Cells Reveals an Evolving Pathology Involving Mitochondrial Dysfunction and Metabolic Disturbances

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the Huntingtin gene, where excessive (≥36) CAG repeats encode for glutamine expansion in the huntingtin protein. Research using mouse models and human pathological material has indicated dysfunctions in a myriad of systems, including mitochondrial and ubiquitin/proteasome complexes, cytoskeletal transport, signaling, and transcriptional regulation. Here, we examined the earliest biochemical and pathways involved in HD pathology. We conducted a proteomics study combined with immunocytochemical analysis of undifferentiated HD-affected and unaffected human embryonic stem cells (hESC). Analysis of 1883 identifications derived from membrane and cytosolic enriched fractions revealed mitochondria as the primary dysfunctional organ in HD-affected pluripotent cells in the absence of significant differences in huntingtin protein. Furthermore, on the basis of analysis of 645 proteins found in neurodifferentiated hESC, we show a shift to transcriptional dysregulation and cytoskeletal abnormalities as the primary pathologies in HD-affected cells differentiating along neural lineages in vitro. We also show this is concomitant with an up-regulation in expression of huntingtin protein in HD-affected cells. This study demonstrates the utility of a model that recapitulates HD pathology and offers insights into disease initiation, etiology, progression, and potential therapeutic intervention. Read Full Article.

Application of a low cost array-based technique — TAB-Array — for quantifying and mapping both 5mC and 5hmC at single base resolution in human pluripotent stem cells

5-hydroxymethylcytosine (5hmC), an oxidized derivative of 5-methylcytosine (5mC), has been implicated as an important epigenetic regulator of mammalian development. Current procedures use DNA sequencing methods to discriminate 5hmC from 5mC, limiting their accessibility to the scientific community. Here we report a method that combines TET-assisted bisulfite conversion with Illumina 450 K DNA methylation arrays for a low-cost high-throughput approach that distinguishes 5hmC and 5mC signals at base resolution. Implementing this approach, termed “TAB-array”, we assessed DNA methylation dynamics in the differentiation of human pluripotent stem cells into cardiovascular progenitors and neural precursor cells. With the ability to discriminate 5mC and 5hmC, we identified a large number of novel dynamically methylated genomic regions that are implicated in the development of these lineages. The increased resolution and accuracy afforded by this approach provides a powerful means to investigate the distinct contributions of 5mC and 5hmC in human development and disease. Read Full Article.

Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives

Human pluripotent stem cells (hPSCs) are potential sources of cells for modeling disease and development, drug discovery, and regenerative medicine. However, it is important to identify factors that may impact the utility of hPSCs for these applications. In an unbiased analysis of 205 hPSC and 130 somatic samples, we identified hPSC-specific epigenetic and transcriptional aberrations in genes subject to X chromosome inactivation (XCI) and genomic imprinting, which were not corrected during directed differentiation. We also found that specific tissue types were distinguished by unique patterns of DNA hypomethylation, which were recapitulated by DNA demethylation during in vitro directed differentiation. Our results suggest that verification of baseline epigenetic status is critical for hPSC-based disease models in which the observed phenotype depends on proper XCI or imprinting and that tissue-specific DNA methylation patterns can be accurately modeled during directed differentiation of hPSCs, even in the presence of variations in XCI or imprinting.  Read Full Article.

Dynamic Changes in the Copy Number of Pluripotency and Cell Proliferation Genes in Human ESCs and iPSCs during Reprogramming and Time in Culture

Genomic stability is critical for the clinical use of human embryonic and induced pluripotent stem cells. We performed high-resolution SNP (single-nucleotide polymorphism) analysis on 186 pluripotent and 119 nonpluripotent samples. We report a higher frequency of subchromosomal copy number variations in pluripotent samples compared to nonpluripotent samples, with variations enriched in specific genomic regions. The distribution of these variations differed between hESCs and hiPSCs, characterized by large numbers of duplications found in a few hESC samples and moderate numbers of deletions distributed across many hiPSC samples. For hiPSCs, the reprogramming process was associated with deletions of tumor-suppressor genes, whereas time in culture was associated with duplications of oncogenic genes. We also observed duplications that arose during a differentiation protocol. Our results illustrate the dynamic nature of genomic abnormalities in pluripotent stem cells and the need for frequent genomic monitoring to assure phenotypic stability and clinical safety. Read Full Article.

Restricted ethnic diversity in human embryonic stem cell lines

Human pluripotent stem cells (hPSCs) have the capacity to self-renew indefinitely and to differentiate into a wide array of cell types, which make them a potential source of essentially unlimited quantities of differentiated cells for basic and clinical research. Read Full Article.

Improved Membrane Proteomics Coverage of Human Embryonic Stem Cells by Peptide IPG-IEF

Increases in the number of cellular membrane bound proteins are now being reported, despite the technical challenges that surround the isolation of this group of hydrophobic proteins. This manuscript reports on the application of membrane stripping using sodium carbonate and peptide IPG-IEF separation to the analysis of the membrane proteome of human embryonic stem cells, a rapidly advancing field with an ever increasing requirement for the identification of new biomarkers. Read Full Article.

Derivation of Human Embryonic Stem Cell Lines from Vitrified Human Embryos

Human embryonic stem cell lines are usually derived from human embryos that have become excess to clinical needs in assisted reproduction programs, whether because the couple in question has completed their family or because the embryo was found to be clinically unsuitable for transfer due to severe genetic condition (in case of pre-implantation genetic diagnosis, PGD). Culturing embryos to a blastocyst stage (5–6 days after IVF) before embryo transfer or cryopreservation instead of earlier commonly used 8-cell stage (3 days after IVF) calls for new methods for embryo cryopreservation and allows higher efficiencies for the actual stem cell derivation. Despite the vast advances in other fields of embryonic stem cell research, methods for derivation of new lines have not changed much over the years, mainly due to scarcity of embryos limiting experimentation. We describe here methods required to derive new embryonic stem cell lines starting from the initial cryopreservation of an embryo and finishing with a new cell line. We cover embryo cryopreservation and warming using a highly efficient vitrification method, the production of feeder cells and feeder plates, as well as embryo handling, plating and critical early passages, including earliest possible cryopreservation of putative stem cells using vitrification. Read Full Article.

Derivation of Huntington's Disease-Affected Human Embryonic Stem Cell Lines

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by an expansion of cytosine-adenine-guanine (CAG) repeats in the Huntingtin gene Htt. To facilitate research into HD, we have derived 4 human embryonic stem cell (hESC) lines containing ≥40CAG repeats in exon 1 of Htt: SIVF017-HD (CAG40), SIVF018-HD (CAG46), SIVF020-HD (CAG48), and SIVF046-HD (CAG45). Additionally, we have derived a normal sibling-matched control for SIVF020-HD, cell line SIVF019. All 5 hESC lines had a normal karyotype, expressed pluripotency markers including Oct4, SSEA3, and Tra-1-81, and could be maintained in culture for multiple (>40) passages. Teratoma studies revealed that the hESC lines were capable of differentiating into cells representative of the 3 germ layers. Furthermore, in vitro neuronal differentiation experiments have confirmed that the hESC lines were able to generate MAP2-positive neuronal cells that express the Htt protein. Combined, these experiments confirm that the cell lines represent pluripotent stem cell lines. These HD-affected hESC lines will be made available to biomedical research laboratories and will provide a valuable tool to investigate the mechanisms and potential treatments for HD. Read Full Article.

Derivation of three new human embryonic stem cell lines

Human embryonic stem cells are pluripotent cells capable of extensive self-renewal and differentiation to all cells of the embryo proper. Here, we describe the derivation and characterization of three Sydney IVF human embryonic stem cell lines not already reported elsewhere, designated SIVF001, SIVF002, and SIVF014. The cell lines display typical compact colony morphology of embryonic stem cells, have stable growth rates over more than 40 passages and are cytogenetically normal. Furthermore, the cell lines express pluripotency markers including Nanog, Oct4, SSEA3 and Tra-1-81, and are capable of generating teratoma cells derived from each of the three germ layers in immunodeficient mice. These experiments show that the cell lines constitute pluripotent stem cell lines. Read Full Article.

The Generation of Six Clinical-Grade Human Embryonic Stem Cell Lines

The edict for producing clinically compliant human embryonic stem cells (hESCs) necessitates adherence to global ethical standards for egg procurement and embryo donation, conformity to regulations controlling clinical-grade cell and tissue product development, and compliance with current good tissue and manufacturing practices (cGTPs and cGMPs, respectively). For example, the U.S. FDA Center for Biologics Evaluation and Research recently promulgated regulations regarding human cells and cellular-based products (HCT/Ps) intended for tissue repair or replacement. Issued under Code of Federal Regulations parts 1270 and 1271 (Code of Federal Regulations, 2006aCode of Federal Regulations, 2006b), the rules are broadened by requirements for donor selection and cGMPs for HCT/Ps. By adhering to regulations and in anticipation of future standards, we have generated six clinical-grade hESC lines. Here we describe their manufacture, from embryo procurement to line characterization, including sterility and pathogen testing (Figure 1). To our knowledge, the lines represent the first to have been produced in compliance with international regulatory requirements, suitable for therapeutic use. Read Full Article.

Social media & sharing icons powered by UltimatelySocial